Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data

Takayabu, Y. N., S. Shige, W.-K. Tao and N. Hirota

Popular Summary

The global hydrological cycle is central to the Earth's climate system,

with rainfall and the physics of its formation acting as the key links

in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known

as latent heat. It arises mainly due to the phase change of water vapor

condensing into liquid droplets; three-fourths of the total heat energy

available to the Earth's atmosphere comes from tropical rainfall. In

addition, fresh water provided by tropical rainfall and its variability

exerts a large impact upon the structure and motions of the upper ocean layer.

Three-dimensional distributions of latent heating estimated from

Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as ~72.6 J s-1 (~2.51 mm day-1), and that over tropical land is ~73.7 J s-1 (~2.55 mm day-1), for 30N-30S. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and

congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land.

While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds.

Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large-scale subsidence is the major factor suppressing the deep convection. Therefore, representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and resultant large-scale circulation.